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Abstract— Robotic and biofeedback-assisted interventions
are promising alternatives to surgical intervention and sup-
plements for traditional physical therapy for children with
gait impairments. This work utilizes a human-in-the-loop op-
timization strategy to adaptively modulate parameters for a
lightweight robotic knee exoskeleton and biofeedback video
game to maximize learning potential following the challenge
point framework. We tested our approach on three able-bodied
participants and one pediatric patient with genu recurvatum, a
common walking pattern in children with neurological injuries.
We implement a Covariance Matrix Adaptation-Evolutionary
Strategy (CMA-ES) optimizer to enforce a target success rate of
70% by continuously adjusting visual biofeedback and exoskele-
ton assistance parameters. Our experimental results demon-
strate the system’s ability to maintain the target challenge level
for the pediatric participant. Stance hyperextension decreased
significantly from pre- to post-training trials on day 2 (9.2◦)
and 3 (3.2◦) of the case study. Swing flexion approached the
clinical target of 65◦ by the end of the third day. The promising
optimizer performance and changes in gait kinematics validate
the feasibility of autonomous parameter tuning to maximize
learning potential in pediatric gait rehabilitation.

I. INTRODUCTION

Children with neurological injuries often have walking
movement disorders that impact the knee joint, with a com-
mon presentation being genu recurvatum. Genu recurvatum
is characterized by knee hyperextension during the stance
phase of gait and limited knee range of motion during
swing phase. Typically patients with genu recurvatum hyper-
extend between 0◦ and −15◦ [1]. Genu recurvatum limits
functional mobility and can lead to long-term joint and
ligament pain [2]. Treatments include strength training of the
calf and quadriceps muscles and motor control exercises [2].
In many cases, invasive treatments like surgical alterations
of the bony and soft tissue elements is required [3]. Phys-
ical rehabilitation is another effective tool for treatment of
genu recurvatum and similar walking impairments, but it is
time-intensive, requires clinician expertise, and is physically
demanding for the therapist.
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Recent research on autonomous robotic exoskeletons has
shown potential for assisting gait rehabilitation by offloading
the clinician’s physical effort to a robotic system [4]. The
addition of biofeedback has further been demonstrated to
help improve outcomes and engage the participant more
actively in therapy [5]. Conner & Lerner [6] showed that
children using visual biofeedback with a robotic exoskeleton
had higher levels of plantar flexor muscle activity com-
pared to using the exoskeleton alone. Importantly, effective
rehabilitation can only occur when the patient is learning
from the interaction. Research suggests that to encourage
volitional learning, the training environment should engage
the participant and provide sufficient challenge to promote
learning without discouraging participation [7], [8].

The challenge point framework [8] suggests that the
optimal challenge level for learning a given task varies as
the individual’s skill increases. The nominal difficulty of the
task should increase alongside skill so as to track the optimal
success rate to facilitate the fastest transition from “novice”
to “expert”. Prior work explored this approach for stroke
rehabilitation, with a video game as the task, where users
self-selected a challenge level [9]. The authors found that
participants settled at a 74% success rate. In a similar study,
players with an approximate 70% success rate showed the
most learning in a “Pong” style video game. This evidence
suggests that physical rehabilitation may be encouraged
and more effective if an ideal success rate is enforced
(where the task is not too hard or too easy) [10]. However,
the modulation of challenge may be patient-specific, task-
specific, etc., and manual tuning of multi-parameter systems
is infeasible [11]. Thus, automated approaches for personal-
izing rehabilitation systems to specified challenge levels are
necessary to deploy these devices in practice.

Human-in-the-loop optimization (HILO) has been used to
individually customize exoskeleton parameters, resulting in
superior performance over using generic device settings [12].
Exoskeleton control policies, even with few parameters, can
result in different behaviors across individuals and finding
ideal parameter combinations is non-trivial. In HILO, a
formal numerical optimizer looks for the control policy
that best fits a particular individual by testing and eval-
uating different parameter combinations. Covariance Ma-
trix Adaptation-Evolutionary Strategy (CMA-ES) [13] is a
common HILO optimization framework, particularly suitable
when an individual’s response to the same set of parameters
is expected to vary with time, such as due to motor adap-
tation or learning [12]. Few studies have extended HILO
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Fig. 1. (A) Knee exoskeleton designed to provide unilateral torque assistance. (B) The biofeedback video game. The red dinosaur avatar displays the
user’s knee angle, and the yellow boxes/birds represent the target kinematic profile for θeq , an example of which is shown in (C). The yellow box shows
the tolerance factor ϵ. While the current knee angle is inside the tolerance, the assistance is set to 0Nm. (D) The algorithm loop to personalize gait
parameters. Each CMA-ES generation applies λ parameter sets, the cost for each set is computed and used to update its estimate of the optimal region.

to rehabilitation or to motor adaptation and learning con-
texts. Li et al. [14] implemented HILO to encourage active
voluntary participation in an upper limb movement task in
stroke patients. Wang et al. [15] targeted engagement in a
virtual cycling task by optimizing parameters to maximize
neural engagement. This prior research and the relatively
small number of studies exploring HILO for motor learning
applications form the motivation for adaptively modulating
challenge level, or task difficulty, to maximize the learning
potential during gait training with an exoskeleton augmented
by gamified biofeedback.

In this work, we formulated a knee exoskeleton and visual
biofeedback system as a HILO problem to maximize learning
in a walking task. We collected experimental data from three
able-bodied (AB) participants challenged to walk in a crouch
gait pattern, and one pediatric clinical participant with genu
recurvatum (GR) prescribed to walk with a normative knee
angle profile. The visual biofeedback system showed the user
a goal kinematic profile in the form of a video game, while
the exoskeleton applied assistive torque as needed to correct
deviations from that profile. Independent stance and swing
CMA-ES optimizers modified various system parameters to
maintain the targeted 70% challenge level.

II. METHODS

A. Knee Exoskeleton Hardware

A lightweight (∼1 kg) powered knee exoskeleton was de-
veloped to provide torque assistance to the wearer (Fig. 1A).

The device assisted unilaterally, actuated by a quasi-direct
drive motor (CyberGear Micromotor, Xiaomi Corp., CN),
capable of 12Nm of peak torque and a continuous torque
of 4Nm. The device is an adapted version of the system in
[16]. The knee joint featured a frontal plane passive degree
of freedom, allowing the device to fit on individuals with
deviation in frontal plane knee angles (i.e. valgus/varus).
The device was secured to the participant with thermoplastic
cuffs at the thigh and shank, both of which could be rotated
to accommodate varying tibiofemoral transverse alignment.
The device was powered by a 20V off-the-shelf lithium
polymer power tool battery (Dewalt, MD). A waist belt held
the battery and mircrocontroller and acted to suspend the
device to prevent movement during long walking sessions.

B. Knee Exoskeleton Control

The device was controlled with a Nvidia Jetson Orin Nano
(Nvidia, CA) and programmed in Python 3.11. Assistance
was applied using an impedance control law (Eq. 1), where
the torque was defined by a stiffness parameter kp, the
measured knee angle θk, and an error from an equilibrium
angle θeq , and an additional velocity damping term kd, set to
a constant value of 0.002 Nm

deg·s . A tolerance, ϵ, was defined to
set zero assistance if the error was less than ϵ, which created
an assist-as-needed effect.

τ =

{
0 |θk − θeq| ≤ ϵ

kp(θk − θeq)− kdθ̇k else
(1)
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TABLE I
PARTICIPANT DEMOGRAPHIC DATA

Participant Age Weight (kg) Height (cm) Gender Gait Pathology

AB1 28 yr 64.9 170 Male N/A
AB2 22 yr 63.6 175 Female N/A
AB3 24 yr 78.0 180 Male N/A

GR1 12 yr 37.0 155 Male genu recurvatum

Stance and swing optimizers use independent variables.
Knee angle was computed using two 9-axis inertial mea-

surement units (IMU) (Microstrain by HBK, VT), placed on
the thigh and shank. The difference in the roll orientation
between the two sensors defined the knee angle, zeroed
to a static measurement taken during quiet standing. The
orientations were computed using the built-in sensor fusion
algorithm. Gait phase was estimated in real-time using
ground reaction forces from the treadmill, with a foot-contact
threshold of 40N, and communicated to the controller over
UDP. The estimated gait time averaged the previous two gait
cycles. The controller was transitioned from stance phase
into swing phase at toe-off and back to stance phase at heel
contact. All control and sensing was executed at 200Hz.

C. Visual Biofeedback Game

The biofeedback game displayed an avatar representing
the IMU measured knee angle of the participant, with
targets placed along a goal kinematic trajectory (Fig. 1B).
The trajectory was defined by a Piecewise Cubic Hermite
Interpolating Polynomial (pchip), with prescriptions for
stance knee angle (θst) and peak knee flexion (θpeak), and
all other points being interpolated. The θeq profile definition
(Fig. 1C) used control points at 0, 10, 40, 67, 73, and 95%
gait cycle. The game targets were displayed at 10, 40, 60,
70, and 85% gait cycle, and the target movement across the
screen was aligned with the real-time estimated gait phase.
The user controlled the avatar vertically on the screen, by
flexing or extending their knee joint. The player received
points for each target they hit and were instructed to score as
many points as possible. The game was written in the Godot
Game Engine (Godot Foundation) using free online assets
[17], [18], [19]. The game communicated with the controller
over UDP to receive real-time knee angle estimates.

D. Difficulty Adaptation Optimizer

The system was optimized using CMA-ES, a method
designed to optimize black box systems by sampling and
producing generations of parameter sets, ranking them by
cost, and adapting its estimate of the search space. A “gen-
eration” consists of parameter sets sampled from the same
search space. We selected CMA-ES based on its previous use
in rehabilitation context and its suitability to time-varying
spaces, but to our knowledge, this algorithm has yet to
be applied in gait rehabilitation with the explicit goal of
maximizing learning potential. Stance and swing phases were
simultaneously optimized by independent optimizers, with
the stance parameters being θst, ϵst, and kp,st, and swing
being θpeak, ϵsw, and kp,sw. Each parameter set’s cost was

the absolute difference between the target, 70%, and actual
success rate, defined as the ratio of points scored to the total
possible points over the last 10 strides of a parameter set.

cost = |success rate − 0.7| (2)

For the AB participants, the bounds on θst and θpeak were
set to [25, 45]

◦ and [60, 85]
◦ respectively to challenge them

to walk in a crouched posture. The bounds for the GR
participant were set to [0, 15]

◦ and [45, 65]
◦ to encourage

a normative gait profile [20], [21]. Both stance and swing
bounds on ϵ were set at ± [1, 10]

◦. For the stiffness pa-
rameters, we set the maximum allowable torque to 20% of
the expected peak knee moment, when the error between
the current knee angle and equilibrium angle was 20◦.
Expected peak knee moment was taken from average kinetic
profiles from literature [20], to be 0.5 Nm

kg and 0.25 Nm
kg for

stance and swing respectively. Thus, bounds for kp,st and
kp,sw were set at [0, 0.005] Nm

deg·kg and [0, 0.0025] Nm
deg·kg . The

optimizer was implemented using the cmaes package in
Python 3.11 [22]. For the AB participants, the optimizer was
configured with default recommended parameters and param-
eters were normalized to the recommended scaling [23]. For
the GR participant, population size (λ, number of parameter
sets per generation) was set to 5 instead of the default of
7. This change was made to increase the adaptation rate of
the optimizer, slightly sacrificing global search performance
for faster convergence, so the participant would spend more
of the experiment close to the target learning rate. The
effect of this change was tested using an offline bootstrapped
simulation with a population size of 5. An analysis of
experimental results from AB participants showed that using
λ = 5 causes a shift in the next generation’s estimate of
each parameter by less than 10% compared to λ = 7. Given
the high time cost of collecting experimental data with a
pediatric subject, the smaller λ was used for this case study.

E. Experimental Protocol

We recruited N=3 able-bodied (AB) pilot subjects and N=1
pediatric genu recurvatum (GR) participant. Each visit con-
sisted of a one-minute pre-training baseline walking trial, fol-
lowed by the training session, and a one-minute post-training
baseline. The primary outcome for the AB participants was
optimizer performance and so they were only evaluated
over one visit. The GR participant completed three visits
on subsequent days to additionally evaluate knee kinematic
changes. During training, the participant wore the exoskele-
ton and played the biofeedback game simultaneously. Every
30 seconds, a new parameter set was sampled from the CMA-
ES optimizer. Once all parameter sets from a generation were
trialed, the optimizer was updated (Fig. 1B). AB1 and AB3
completed 8 generations, while AB2 only completed 7 due to
time restrictions. For the GR participant, 10 generations were
collected each day, and the optimizer retained its state from
the previous day. Kinematic data were collected using motion
capture (Vicon, UK), and inverse kinematics was performed
to compute joint angles (OpenSim, CA). Participants walked
on a force-plate instrumented treadmill (Bertec, OH) at 80%
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Fig. 2. Success rate and optimizer estimates over each generation for (A) AB subjects and (B) GR subjects. Blue lines denote the average success rate
of each generation and grey lines denote each parameters normalized mean. Yellow dashed line marks 70% target success rate.

self-selected speed, determined through the 10-meter walk
test across an instrumented gait mat (Protokinetics, PA).
The AB participants took breaks as needed and breaks
were enforced every 3 generations for the GR participant
to minimize fatigue. The experimental protocols H19167
and H19006 were approved by the Georgia Institute of
Technology Institutional Review Board.

F. Data Analysis Approach

The CMA-ES optimizer’s performance was evaluated by
its ability to maintain the participant’s success rate at 70%.
We estimated the relevance of each parameter to the opti-
mizer by computing the variance of the optimal estimate for
AB participants. High variance indicates the high relevance
to maintaining the success rate. To better quantify the GR
participant’s responses to changes in parameters, we fit a
linear model (fitlm, MATLAB, Mathworks, MA) compar-
ing the inter-iteration change in parameter values (∆param)
to the change in success rate (∆success rate) for each
parameter. The 149 parameter set differences across three
days allowed for significant correlations to be determined
for this single participant. Next, we computed a personalized
challenge level for each phase using a 2-norm of the set
of parameters at a single iteration, where each parameter
was weighted by its coefficient in the linear model, and
normalized to the maximum possible challenge. Knee kine-
matic results were evaluated within the GR participant using
one-way ANOVA with a Tukey post-hoc test to determine
significant changes between conditions (multcompare).

III. RESULTS

A. Optimizer Performance

1) Able-Bodied Subjects: AB1 and AB3 showed a rel-
atively high performance in the task both during stance

and swing, with the optimizer being unable to pull either
subject to 70% success rate by the end of the session. The
optimizer was more successful with AB2, with stance phase
ending within 10% of the target success rate, and achieving
the target success rate during swing within 5 generations
(Fig. 2A). During stance phase, for all AB participants,
the target tolerance parameter selected by the optimizer
consistently varied the most. For swing phase, we saw similar
results for AB1 and AB2, with tolerance being the most
varied parameter. In AB3, the peak knee flexion angle and
exoskeleton assistance were varied more by the optimizer.

2) Pediatric Genu Recurvatum Subject: The CMA-ES
optimizer was able to maintain the targeted score rate for the
GR participant (Fig. 2B). During stance we saw a decreasing
trend towards the 70% target, coming to within 10% of the
target by the end of day 1. This target was maintained on
subsequent days with mean success rates of 72% and 66.2%
on days 2 & 3 respectively. The swing phase score rate
started and remained close to the target across all days, with
mean success rates of 73.4%, 74%, and 70.27% on days 1,
2, and 3 respectively. The stance optimizer varied all three
parameters to a similar extent across the three days, whereas
the swing optimizer primarily varied the tolerance parameter.

B. Score Rate Changes and Challenge for GR Participant

The swing phase score rate model identified tolerance
as the only significant parameter (p ≪ 0.001) and the
others are excluded from the challenge level estimation. The
knee angle and tolerance parameters were significant factors
(p ≪ 0.001) affecting stance phase score rate (Table II).
The challenge level estimated from these parameters (Fig. 3)
shows a strong increasing trend in swing and a soft increasing
trend in stance (p ≪ 0.001).
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TABLE II
PARAMETER IMPORTANCE: (*:p < 0.05)

∆success rate = β0 + β1∆θst/peak + β2∆ϵst/sw + β3∆kp,st/sw

∆stance success rate ∆swing success rate

β0 0.0384 0.1119
β1 3.3265* -1.6403
β2 4.8127* 5.0875*
β3 1.6784 0.1668

stance challengei =
∥∥∥∥[β1θst,i

β2ϵst,i

]∥∥∥∥
2

swing challengei = ϵst,i

C. Kinematic Outcomes for GR Participant

Knee kinematic results were compared during the pre-
training and post-training baseline conditions, as well as
the last generation (5 parameter sets) on each visit for the
GR participant (Fig. 4A, Section II-F). For knee hyperexten-
sion (stance phase), significant improvements between pre-
training and the last generation of training were seen on all
visits (4.3◦, 7.3◦, 7.5◦ on days 1, 2, and 3 respectively,
p < 0.05). Significant improvement between the pre- and
post-training was seen on days 2 (9.2◦) & 3 (3.2◦) (Fig. 4B).
During swing flexion, we set 65◦ as a reference, because
that was the maximum target the system could show the
participant. The day 1 pre-training baseline had the lowest
peak knee flexion and in each subsequent condition, peak
knee flexion exceeded the 65◦ reference. We saw significant
changes in peak knee flexion (Fig. 4C) and, at the end of the
last day, the participant was closest to the 65◦ reference.

IV. DISCUSSION

In this work, we demonstrate a HILO approach to cus-
tomize exoskeleton and biofeedback parameters to maintain
a specified level of success during a task. Through an ex-
perimental study, we 1) establish the efficacy of an adaptive
algorithm for challenge modulation, 2) quantify parameter
importance identified from the algorithm’s estimations, and
3) evaluate the effects of the exoskeleton-biofeedback frame-
work on joint kinematics. Our results from a pilot experiment
with three AB participants and a clinical case study with
a pediatric participant with GR provide promising evidence
for simultaneous exoskeleton and biofeedback modulation to
target kinematic adaptation for gait rehabilitation.

The CMA-ES algorithm showed limited ability to match
the desired score rate in AB participants, despite increasing
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task difficulty. They could easily achieve the crouch gait with
a high success rate, rendering parameters needed for a 70%
success rate outside the set parameter bounds. The algorithm
was more successful for the pediatric participant, as walking
with a normative gait was more challenging due to their
GR. The parameters required to keep the GR participant
at the 70% success rate changed over time suggesting the
participant was improving. An optimization strategy that
cannot account for a dynamic environment (such as human
adaptation) like Bayesian Optimization or Gradient Descent
would not track changes in optimal parameters. Our results
indicate a need for a time-varying algorithm like CMA-ES. A
potential limitation of CMA-ES is the time of convergence.
Some approaches to address this limitation include shrinking
search spaces and faster adaptation rates.

The parameter importance computed from the sampled
parameter sets suggests that target tolerance was the most
important parameter for both stance and swing optimizers.
A decrease in tolerance requires more precise knee motion to
hit the kinematic targets, thus requiring increased volitional
control over the knee joint. For the GR participant, a higher
knee flexion target was associated with lower success rates
in swing phase, but an increase in stance flexion target
lowered the challenge of the task. This likely stems from
compensatory crouch gait behavior that individuals with GR
often use to avoid hyper-extension. A target stance angle
close to 0◦ could not be met using crouch gait resulting in
lower score rate due to lack of precise volitional control.
Thus, the stance knee angle target had a similar effect as
tolerance, forcing the participant toward precise knee joint
control to prevent hyperextension. In stance, the exoskeleton
assistance parameter was near-significance (p = 0.0519) and
further experimental analysis is necessary to verify whether
this parameter is important in participants with more severe
impairment or different impairments, such as crouch gait.
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In swing, the changes in exoskeleton assistance did not
significantly change the success rate. However, there was
a significant positive correlation (R2 = 0.44) between the
optimal peak knee flexion angle and exoskeleton assistance
that the optimizer estimated (Fig. 2B). This correlation
suggests that for the optimizer to maintain the intended
success rate, increases in the peak knee flexion parameter
must be accompanied by increases in exoskeleton assistance.
In other words, the participant may have relied on the device
to achieve more challenging knee flexion targets consistently.
Future versions of the optimizer could be tuned to limit over-
utilization of the device over the course of rehabilitation to
ensure users receive maximal carryover benefit.

The exoskeleton and biofeedback system affected imme-
diate changes in gait kinematics toward the target behaviors,
with some evidence for retention across days. Although
the pediatric participant exhibited exaggerated peak swing
flexion (i.e. steppage gait) on the first and second days going
beyond the target of 65◦, on day 3, this exaggeration was
less severe. This trend suggests the participant adapted to the
desired behaviors over time despite initial overcompensation.
In stance phase, hyperextension improved during training on
all visits, with carryover from pre- to post-training on days
2 and 3. Both these kinematic outcomes could be negatively
affected by a limitation of the visual biofeedback game which
only rewards meeting the knee angle targets. As the game
does not explicitly penalize hyperextension during stance or
exaggerated flexion during swing it may inadvertently rein-
force compensatory behaviors. Future versions of the game
will incorporate such penalties alongside positive rewards.

The long-term goal of this research is to encourage gait
rehabilitation in pediatric patients with gait impairments such
as genu recurvatum and crouch gait. The able-bodied pilot
and pediatric clinical case study presented in this paper are
a first step toward this goal. Future work in this direction
should aim to further evaluate different adaptation algo-
rithms, their effect on a larger population and more diverse
set of impairments, and the efficacy of adaptive training
for long-term rehabilitation. The current study and ongoing
improvements in the design and control of exoskeletons and
serious games highlight the promising potential of adaptive
training protocols for gait retraining through autonomous
modulation of task difficulty to encourage learning.
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