
Challenge-Based Adaptation of Exoskeleton Assistance and Gamified 
Biofeedback Enables Automated Gait Rehabilitation
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Appropriate challenge is needed for effective rehabiliation
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• 12 Nm Quasi-direct drive knee 
exoskeleton provide assistance and haptic 
feedback[4]

• Knee angle is estimated in real-time by 
relative IMU position

• Proportional assistance is provided when 
the user deviates away from the specified 
knee angle profile and tolerance

• Video game projects 
discretized knee kinematic 
profile

• User scores points when 
they hit the targets, 
controlling the avatar with 
their real-time knee 
kinematics

Approach                                                                                                                                       
Covariance Matrix Adaptation - Evolutionary Strategy[3] (CMA-ES) was used to 
continuously tune parameters of a wearable exoskeleton and visual biofeedback system, 
to maintain a  constant nominal success rate (70%) as the user adapts over time.

Three parameters (impedance stiffness, target angle, tolerance) were tuned independently 
during stance phase and swing phase walking.

Three healthy young adult participants and one child (13yo) with genu recurvatum (knee 
hyperextension) completed the protocol.

Success rate is maintained for pediatric participant
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Optimizer Implementation
CMA-ES, was selected for the online optimizer, due to its ability to handle an 
inherently dynamic environment. CMA-ES samples generations of new 
parameter sets based on the best performing ones from the previous generation.

Knee kinematics improve during & after training

Effective challenge level increases throughout training
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• Parameters were normalized between 0 and 10
• Initial search space (σ) = 2
• Parameter sets per generation (λ) = 7 for AB and 5 for pediatric
• For AB, 8 generations on one visit (56 parameter sets)
• For pediatric, 10 generations per visit, for 3 visits (150 parameter sets)
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•Both stance and swing phase hit 70% success rate by the end of day 1
•Success rate was stable throughout subsequent visits
•Parameters significantly changed throughout the training implying continuous 

training and adaptation
•The tolerance (target size) was the most important factors in controling score 

rate in both stance and swing phase
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Parameters significant to 
changes in success rate were 
used to determine an overall 
“challenge”

Challenge level showed a 
strong upward trend in swing 
and a weak upward trend in 
stance, indicating improvement 
in skill throughout the training

As children with gait impariments undergo gait training, their ability is expected to improve 
and an appropriate challenge level is beneficial to continue optimal progression.
•Previous studies have found 74% as a self-selected challenge level in gamified motor 

rehabilitation tasks[1], and that users who were enforced to a 70% success rate exhibited 
the most improvment in a video game task[2].

•In paradigms with multiple interventions, it is unclear how different parameter settings 
impact a specific individual, and how these settings are may change over time.

•An online optimization framework is needed to continuosly maintain a target success rate 
in order to maximize rehabilitative benefit.

References
[1] Q. Sanders, et al., Feasibility of Wearable Sensing for In-Home Finger Rehabilitation Early After Stroke, IEEE Transactions on 
Neural Systems and Rehabilitation Engineering, June 2020
[2] N. Al-Fawakhiri, et al., Evidence of an optimal error rate for motor skill learning, bioRXiv, July 2023
[3] N. Hansen, The CMA Evolution Strategy: A Comparing Review, in Towards a New Evolutionary Computation: Advances in the 
Estimation of Distribution Algorithms, 2006
[4] D. Lee, et al., AI-driven universal lower-limb exoskeleton system for community ambulation, Science Advances, December 2024

For all three visits, 
hyperextension reduced 
during training, with 
carryover reductions on 
visits 2 & 3

Peak knee flexion also 
increased, though some 
excessive knee flexion was 
seen on visit 1 & 2
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Able-bodied young adults

AB participants did not show 
the same consistent score rate, 
likely due to the difficulty 
hitting the set bounds and the 
AB participants still being 
able to perform the task 
effectively
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