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ABSTRACT Epically Powerful is an open-source robotics infrastructure that streamlines the underlying 

framework of wearable robotic systems – managing communication protocols, clocking, actuator commands, 

visualization, sensor data acquisition, data logging, and more – while also providing comprehensive guides 

for hardware selection, system assembly, and controller implementation.  Epically Powerful contains a code 

base enabling simplified user implementation via Python that seamlessly interfaces with various commercial 

state-of-the-art quasi-direct drive (QDD) actuators, single-board computers, and common sensors, provides 

example controllers, and enables real-time visualization.  To further support device development, the package 

also includes a recommended parts list and compatibility guide and detailed documentation on hardware and 

software implementation.  The goal of Epically Powerful is to lower the barrier to developing and deploying 

custom wearable robotic systems without a pre-specified form factor, enabling researchers to go from raw 

hardware to modular, robust devices quickly and effectively.  Though originally designed with wearable 

robotics in mind, Epically Powerful is broadly applicable to other robotic domains that utilize QDD actuators, 

single-board computers, and sensors for closed-loop control. 

INDEX TERMS Actuators, Assistive Robots, Control systems, Exoskeletons, Mechatronics, Open source 

software, Rapid prototyping, Robotics, System integration, Wearable robots  

I. INTRODUCTION 

Wearable robotic controls researchers are often faced with 

a choice between buying a pre-existing off-the-shelf 

robotic system or developing their own custom robotic 

system from the ground up.  Off-the-shelf systems have the 

benefit of well-designed, robust, and ready-to-use physical 

components along with documentation and technical 

support [1], [2], [3], [4], [5], [6].  However, these systems 

often lack customizability and may operate using guarded 

or proprietary platforms that inhibit full access to mid- and 

low-level control structures and parameters.  On the other 

hand, developing custom hardware and software enables 

researchers to tailor systems to their specific application 

with full access to system controls [7], [8], [9], [10], [11], 

[12], [13], [14].  However, these endeavors often suffer 

from time-intensive and expensive development processes 

and the lack of broader community support and 

collaboration throughout development and deployment.  

This tug-of-war between pre-set reliability and flexibility 

impedes researchers from being able to progress 

fundamental controls research that is crucial to the 

advancement of wearable robotic systems. 
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In recent years, the development of custom wearable 

robotic systems has been propelled by advances in 

commercially available sub-components.  Specifically, the 

popularization of quasi-direct drive (QDD) actuators has 

hugely benefitted the robotics community; these new 

commercially available QDD actuators are fast, 

backdrivable, open loop torque controllable, and low-

profile “pancake” shaped actuators that are well suited for 

exoskeletons, prostheses, quadrupeds, and related types of 

robotic systems.  Though these developments have sped up 

the mechanical design process by enabling and enhancing 

the quality of custom builds, researchers are often still 

tasked with developing mechatronic architectures and 

software interfaces from scratch as well as ensuring cross-

component compatibility and integration.  These 

development efforts are time consuming and typically lead 

to non-standardized setups that contribute to existing 

research silos.  This inhibits groups from easily 

collaborating, sharing control frameworks, comparing 

controllers across hardware, or even maintaining control 

system uniformity within individual lab groups.  There is a 

need for an open-source mechatronics and software 

infrastructure that is robust, reliable, and modular to unify 

the controls implementation with these commercial 

actuators and broader wearable robotic systems. 

Recent research efforts have highlighted open-source 

hardware and software research tools as promising 

approaches to reduce development time and propel 

scientific progress.  During the rise in popularity of 

modern-day wearable robotics research, the Flexible, 

Scalable Electronics Architecture (FlexSEA) offered 

streamlined and efficient embedded hardware with a 

software stack for core functions such as motor control and 

sensor integration [15].  Though this contribution is well-

suited for wearable robotic applications, the C-based 

programming presents a higher barrier-to-entry and does 

not leverage recent advancements in single board 

computers that could enable quicker and simpler 

prototyping and implementation.  With similar motivations, 

the Open-Source Leg (OSL) was developed as a combined 

hardware-software platform for developing lower limb 

prostheses, aimed at standardizing hardware and enabling 

cross-group comparisons, replication, and collaboration 

[16].  However, this development is prosthesis-specific, 

inhibiting use for broader and customizable robotic 

systems.  Similar to the OSL, the OpenExo project 

streamlines the hardware and software development of 

upper and lower limb exoskeletons [17].  However, the 

software architecture is designed to work with specific 

hardware configurations, and the Arduino-based 

programming interface deters advanced and data-driven 

code implementation without an additional computer.  

Finally, the M-BLUE exoskeleton provides an affordable 

and modular open-source hardware setup for lower limb 

exoskeletons [18].  However, the mechanical-only open-

source design requires mechatronic and software 

development.    Together, these efforts illustrate the success 

of open-source efforts lowering the barrier for robotics 

research, enabling researchers to address fundamental 

questions more quickly and reliably.  While these open-

source efforts have advanced the field by offering 

accessible and specialized solutions, they often lock 

developers into pre-determined hardware setups.  Our goal 

is to provide an extensible, modular hardware-software 

infrastructure that supports a wide range of hardware 

configurations without sacrificing rigor or usability. 

In this paper, we present Epically Powerful (named after 

the Georgia Tech EPIC and PoWeR Labs – the two research 

groups that collaborated to create the platform), an open-

source software and mechatronics infrastructure to 

accelerate the development of custom wearable robotic 

systems.  The cornerstone of the Epically Powerful package 

is the software infrastructure to communicate with 

commercially available actuators via controller area 

network (CAN) communication, notably CubeMars AK 

Series, RobStride, and CyberGear actuators.  In addition, 

Epically Powerful contains software packages for analog 

sensing from various commercial inertial measurement 

units (IMUs), clocking, visualization, safety monitoring, 

and other essential plumbing for robotic system operation.  

Our system leverages single-board computing and a 

Python-based interface, offering a simple and accessible 

platform for hardware integration and software 

development.  The installation of Epically Powerful is 

simple, requiring only a few lines of code to install the 

package and all dependencies, set up a hotspot, and other 

tasks needed for immediate operation.  The software 

package is accompanied by extensive documentation, 

recommended parts list and compatibility guide, and 

detailed instructions on both software and hardware 

implementation.  This package is designed to be modular 

and extensible, allowing users to easily swap components, 

update controllers, and add functionality without needing 

to reconfigure the essential hardware and software that 

enables baseline functionality.  Epically Powerful enables 

both novice and expert roboticists to accelerate custom 

wearable robotic system development without sacrificing 

rigor, efficiency, or reliability.  Full documentation is 

available at https://gatech-epic-power.github.io/epically-

powerful/ and code repository is available at 

https://github.com/gatech-epic-power/epically-powerful. 

II. CONSTRUCTING AN EPICALLY POWERFUL ROBOT 

Epically Powerful is intended to serve as an adaptable 

mechatronics framework and software stack that enables the 

rapid development and operation of wearable robotic devices.  

The hardware and software infrastructure supports modular 

combination of actuators, single-board computers, sensors, 

and power sources into one cohesive mechatronic system, 

facilitating the realization of custom application-specific 

https://gatech-epic-power.github.io/epically-powerful/
https://gatech-epic-power.github.io/epically-powerful/
https://github.com/gatech-epic-power/epically-powerful
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devices (Fig. 1).  We intentionally decouple the core 

mechatronics and control functionality from domain-specific 

device configurations, enabling the user to design a physical 

robot that is best suited for their application.  For example, if 

using Epically Powerful to construct and control a hip 

exoskeleton, the user can freely develop the human interfacing 

components that couple the actuators to the user as well as a 

backpack or other holder for the mechatronics components.  

The compatibility of all included subcomponents (i.e. 

actuators, computers, sensors, and power sources) ensures that 

users can configure a device tailored to their application, rather 

than being locked into a pre-set hardware configuration. 

Epically Powerful includes extensive online documentation 

and open-source code repository [19], [20].  The 

documentation discusses part selection, subcomponent setup, 

mechatronic assembly, actuator configuration, as well as 

software deployment and testing.  Users can select from a suite 

of commercial quasi-direct drive (QDD) actuators, single-

board computers (Raspberry Pi and NVIDIA Jetson Orin), 

sensors, and power source options.  The documentation 

provides further guidance on assembling power and 

communication subsystems, implementing safety options, 

configuring devices, and other steps needed to get a robot up 

and running, supporting reproducibility and rapid 

development. 

The software package, available through the Python 

package index (PyPI), provides robust functionality for any 

combination of chosen hardware subcomponents.  Crucially, 

the software package abstracts low-level control operations, 

enabling the user to focus on mid- and high-level controller 

development using Python (Fig. 2).  The included supporting 

functions for real-time control operation alongside example 

controllers lower the development time barrier for both novice 

and experienced roboticists.  

Broadly, Epically Powerful aims to provide users with 

domain-specific design flexibility while accelerating 

development with modular, vetted hardware and a robust and 

adaptable software stack.  Although originally designed by 

our group for the development of wearable robots and related 

devices, the common use of QDD actuators, single-board 

computers, and inertial measurement unit (IMU) sensors 

across many areas of robotics allows this package to be 

useful to the broader robotics community. 

III. HARDWARE COMPONENTS 

We designed Epically Powerful’s control system to be 

compatible with a suite of commercially-available, off-the-

shelf components, allowing researchers to choose the 

components that are best suited for their application.  We 

accommodate several QDD actuators that span a large range 

of torque capabilities applicable for wearable robotics, two 

classes of single board computers, various IMU sensors, and 

power source options (Fig. 1).  All computers are compatible 

with all actuators and sensors and can also be powered using 

any of the included battery types, enabling users to select 

components specific to their application.  Our ordering guide 

not only outlines these component options but also highlights 

key implementation needs across these categories (e.g. 

battery choices best suited to selected components, needed 

connectors, etc.).  Here, we discuss the hardware 

components that we have ensured are compatible with 

Epically Powerful software and that are discussed in our 

ordering and compatibility guide (Fig. 1). 
 

A. ACTUATORS 

The supported and compatible hardware includes QDD 

actuators, available through CubeMars, RobStride, and 

CyberGear.  At the time of this publication, the compatible 

actuators provide rated torque capabilities ranging from 1.3-

40 Nm, peak torque capabilities ranging from 4.1-120 Nm, 

with costs ranging from $136-$799.  These compatible 

actuators include all CubeMars AK Series actuators, all 

RobStride Dynamics RobStride Series actuators, and the 

Xiaomi CyberGear Micromotor.  Because the CubeMars 

AK80-64 is not a QDD actuator and the RobStride 00 does not 

have a thin, pancake-like profile like the others discussed 

throughout this work, they are excluded from our parts list 

though they are also compatible with the Epically Powerful 

system.  We also intend to continually update the package 

following publication to ensure compatibility with any new 

state-of-the-art QDD actuator releases. 

Each of these actuators contains an encoder, providing 

position and velocity measurements during actuator operation.  

FIGURE 1. The compatible hardware setup for Epically Powerful is meant to be modular and customizable.  The three main components that users 
need to select are actuators, power source(s), and a computer, with optional sensors.  The system is compatible with all CubeMars AK-Series 

actuators, all RobStride actuators, and the CyberGear Micromotor.  A Li-Ion drill battery or LiPo battery can be used to power the actuators and 
computer, with the computer being optionally and separately powered by a power bank.  Users can also choose between an NVIDIA Jetson Orin Nano 
or Raspberry Pi.  Users can interact with common inertial measurement unit (IMU) sensors, alongside native actuator encoders.   We include 
recommendations and setup instructions for all parts needed to interface between the actuators, power, computer, and sensors. 
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Because this is a sensor that is natively included with 

actuation, encoders are not discussed in the Sensors section of 

this paper.  Similarly, in the code base, encoders are referenced 

through the Actuation class rather than the Sensing class. 

Our documentation and ordering guide provide lists of 

various components needed to ensure actuator function and 

safety.  Each set of actuators should be accompanied by a 

CAN transceiver board that enables CAN communication 

with the chosen computer.  Additionally, actuators can be 

powered using one of our recommended lithium polymer 

(LiPo) battery or lithium ion (Li-Ion) drill battery options, 

along with fuses that protect the system if current is 

overdrawn.  Finally, actuators should also include an 

emergency stop to ensure user safety.  All of these components 

are included in the recommended parts list and assembly 

instructions. 

 
B. SINGLE BOARD COMPUTERS 

Epically Powerful is compatible with both the NVIDIA Jetson 

Orin Nano series and the Raspberry Pi series of single board 

computers running a Linux-based operating system.  These are 

highly capable devices that have been broadly used to control 

advanced wearable robotic systems [10], [12], [21], [22].  The 

Jetson Orin Nano provides a higher-end option that is 

particularly suited for real-time machine learning and vision 

processing due to its onboard NVIDIA graphics processing 

unit (GPU) with CUDA cores.  The Raspberry Pi has reduced 

real-time machine learning capacity but is an excellent lower-

cost, lower-power, and lower profile alternative for diverse 

robotic applications.  We intend to ensure Epically Powerful 

compatibility with future hardware and software updates to 

these single board computer lines. 

In the ordering and compatibility guide, we provide various 

power options for these computers.  Computer power can 

either be shared with actuators or be powered separately.  If 

power is shared, we provide a recommended buck converter 

that enables the battery’s voltage to be stepped down to a level 

that is appropriate for the computer along with a fuse that 

protects the system from overdrawn current.  If power is 

separate, we provide a recommended power bank. 

 
C. POWER SOURCES 

Li-Ion drill or LiPo batteries are used to power the actuators in 

the system, as well as the computer if the user chooses a shared 

power source.  In the ordering and compatibility guide, we 

recommend suitable batteries for each of the actuators that are 

compatible with Epically Powerful, including various Li-Ion 

drill battery and LiPo battery options.  Li-Ion drill batteries are 

comparably low-maintenance, safe, easily accessible, and 

durable, and thus we strongly recommend them over LiPo 

alternatives, though they suffer slightly from being bulkier and 

heavier than their LiPo counterparts.  LiPo batteries are 

comparably more power dense, allowing them to be lighter in 

weight.  However, LiPo batteries are also susceptible to 

catching fire, so we only recommend them if the user group is 

familiar with and equipped with proper LiPo charging 

equipment and storage.  Computers can be powered by sharing 

and stepping down the actuator power or by using a separate 

power bank.  We recommend components for both options 

and discuss setup instructions in the documentation 

(https://gatech-epic-power.github.io/epically-powerful/). 

 
D. SENSORS 

To complement the on-device computation and actuation, 

which includes encoder sensors, Epically Powerful currently 

supports three IMU types: the MicroStrain series (HBK 

MicroStrain, Williston, VT, USA), OpenIMU series 

(ACEINNA, Tewksbury, MA, USA) and the MPU-9250 unit 

(TDK InvenSense, San Jose, CA, USA).  The MicroStrains 

provide onboard functionality to filter and derive orientation 

from raw sensor data, making them suitable for higher-end 

sensing tasks where orientation is valued.  The OpenIMUs 

offer similar features including orientation algorithms that, 

like the MicroStrains’, are commercially supported and easily 

accessible. The MPU-9250s offer more basic functionality, 

though their affordability makes them desirable for more 

budget-conscious implementations. It is important to note that 

all three options provide essentially the same basic 

accelerometer and gyroscope readings, with little difference in 

quality between sensors. As newer models in these sensor 

product lines become available, we intend to integrate them, 

along with additional sensor types, into Epically Powerful. 

The ordering guide includes not only each sensor, but also 

any needed or beneficial peripherals.  The MicroStrains 

communicate via universal asynchronous receiver-transmitter 

(UART) cables provided with each unit, many of which can 

be connected over a single USB distributor. Similarly, the 

OpenIMUs, which use the CAN protocol like our actuator 

options, can be connected over the same CAN bus. By 

contrast, the MPU-9250 IMUs, which use the inter-integrated 

circuit (I2C) protocol for communication, can be configured 

with multiplexing boards to enable more than two sensors to 

be connected on the same I2C bus.  Notably, none of the IMU 

communication methods conflict with the actuators’ CAN 

communication, ensuring that all sensors are compatible with 

any actuation setup.  Any configuration of these sensors can 

be set up together on Epically Powerful-supported computers, 

making multi-sensor configurations straightforward to 

implement. 

IV. SOFTWARE PACKAGE 

The Epically Powerful software package enables a seamless, 

Python-based user application programming interface (API) 

for bidirectionally communicating with actuators, querying 

data from sensors, visualizing data in real-time, clocking, and 

recording data (Fig. 2).  Specifically, the actuation portion of 

the software package abstracts away complex low-level 

actuator communication handling and operation monitoring, 
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enabling researchers to focus their effort on mid- and high-

level controller development.  Broadly, the package is 

designed to handle the essential plumbing of a robotic control 

system, while enabling users to readily interact with key 

operations that may vary across use cases.  It should be noted 

that, if any specific application does require the alteration of 

the code’s background operation, the code is fully accessible 

and editable for customization. 
 

A. ACTUATION 

Epically Powerful provides a flexible and robust framework 

for interfacing with a variety of actuators via CAN 

communication.  The main functionality is handled using 

ActuatorGroup objects, which are used to initialize and 

manage a set of actuators.  These can include a mix of 

CubeMars, RobStride, and CyberGear actuators.  To initialize 

an ActuatorGroup, the user constructs the object by specifying 

the type of each actuator (e.g. “AK80-9”) and its 

corresponding CAN ID.  Actuator-specific limits (position, 

velocity, torque, PID gains) are included for each compatible 

actuator and are used to ensure proper communication behind 

the scenes.  Supporting modules add functions such as 

checking connection status, automatically zeroing torque 

when the system is disabled, warning the user when rated 

torques are being exceeded, optionally saturating torque to 

below rated limits, and more (Fig. 2). 

The actuation class manages initialized actuators, verifies 

connectivity, sends commands to actuators, and queries the 

actuators’ current states.  Actuators can be driven using 

desired torque, position, or velocity, with an optional current 

control function for CubeMars actuators.  Actuators can also 

be queried to provide torque, position, velocity, and 

temperature state.  We implemented safety and monitoring 

functionality, such as tracking root mean squared torques 

over a 20 second window with an optional to automatically 

limit torque to prevent overheating of the actuators.  

Supporting functions handle low-level bitwise conversion 

and CAN message packing and unpacking. 

The actuator control framework is implemented on top of 

the python-can library, and by default is designed to use the 

SocketCAN protocol of the Linux specification [23], [24].  

Working directly with different CAN bus interfaces is often 

cumbersome, requiring handling of low-level differences in 

message formats and parsing.  Epically Powerful abstracts 

this process by handling lower-level interfacing with the 

python-can library, enabling users to interact with systems in 

a consistent way across different CAN bus interfaces.  Our 

approach allows users to pass arguments to the 

ActuatorGroup objects, allowing the same message handling 

and sending functions to be used regardless of the underlying 

interface and actuator type. 

Users should note that CubeMars actuators have two 

operating modes, referred to as “MIT” and “Servo” mode, that 

can be initialized and used via Epically Powerful (Fig. 3).  Our 

approach uses MIT mode by default, as that is our 

recommendation for most users.  MIT mode accepts any 

combination of position, velocity, and/or torque commands 

and attempts to drive the actuators directly without utilizing 

cascaded loops (Fig. 3A).  In comparison, Servo mode utilizes 

separate loops for position, velocity, and current (Fig. 

3B,C,D), driven by gains that can only be set via the 

CubeMars R-Link software.  Servo mode does, however, 

allow for direct control of current, which yields slightly higher 

maximum torque outputs than the MIT mode and may be 

desirable for specific applications.  Using direct current 

control is also possible for the RobStride and CyberGear 

actuators, but is not currently included in our implementation. 
 

B. SENSING 

The Epically Powerful package supports three types of IMUs.  

Epically Powerful wraps around HBK MicroStrain’s MSCL 

package to communicate with the MicroStrain IMUs and 

directly initializes MPU-9250 and OpenIMU units [25].  Each 

IMU type is managed by its own class with low-level 

implementation handled in the background by Epically 

Powerful, allowing users to employ consistent commands to 

FIGURE 2. An overview of the Epically Powerful software architecture and functionality.  Users are intended to regularly interact with frontend 
functionality (white boxes), which has a consistent stylistic implementation across device types and code function.  The backend functionality 

(shaded boxes) provides underlying granular structure needed to support simple and robust frontend use. 
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query linear acceleration, angular velocity, magnetometer, and 

temperature data from each IMU type.  Additionally, users can 

query the MicroStrain’s direct orientation estimates and utilize 

their various forms of configurable signal filtering.  Packages 

and setup steps to configure the computer to interface with 

these sensors are either automatically installed on package 

setup or included in the Epically Powerful documentation. 
 

C. TOOLBOX 

The Epically Powerful toolbox provides various functions to 

support the main actuation and sensing functionality during 

real-time control.  These additions include code for regulating 

operating frequency, visualizing data in real time, and 

recording data, alongside example scripts that show sample 

implementations of various Epically Powerful functions. 

1) CLOCKING 

Epically Powerful includes a clocking function to ensure 

fixed-rate operation of control loops.  The clocking 

functionality is implemented using Cython, allowing for 

high precision sleeping via direct calls to C functions in the 

operating system. The clocking uses a “scheduling” 

approach, which cleverly lengthens and shortens each loop 

so that over time the average loop time is very close to the 

target loop time, achieving more consistent clocking 

performance than other approaches.  It should be noted that 

maximum operating frequencies will be determined by the 

contents of the control loop.  We found that operating 

frequencies are largely limited by the number of actuators 

included and the chosen computer.   

We performed tests to determine the maximum operating 

rate based on number of actuators and computer.  This is the 

operating rate at which the CAN buffer can accept data, 

which is separate from the execution time required for 

contents in a typical control loop.  The maximum operating 

rate is meant to act as an upper bound, but control operation 

will likely be limited by computations or other functions in 

the main loop.  We used both a Jetson Orin Nano and 

Raspberry Pi 3B as well as various CubeMars AK Series 

actuators, testing all combinations between one and eight 

actuators.  We initialized testing with a search space between 

50 to 9000 Hz and performed binary search until the search 

space resolution fell below 100 Hz.  Actuators were run for 

60 seconds at each frequency, with the tested frequency 

being eliminated if the computer errored and failed to retain 

the operating rate.  The final chosen frequency was validated 

for five minutes to confirm longer duration operation.  Figure 

4 shows the results from both computers across the various 

actuator counts.  If additional time-intensive operations are 

added to a control loop (e.g. machine learning models), we 

encourage characterizing the added operation times and 

modifying these recommended values. 

 

2) DATA VISUALIZATION 

Epically Powerful is designed to be compatible with 

PlotJuggler, a widely used visualization tool that is commonly 

deployed alongside middleware, such as the Robot Operating 

System (ROS) [26], [27].  To simplify the implementation 

process, Epically Powerful provides a simplified interface for 

sending data to PlotJuggler via a user datagram protocol 

(UDP) socket with messages encoded as JavaScript Object 

FIGURE 4. Control loops describing the four available modes. A) "MIT" 
control mode allows for compound control of torque, position, and 
velocity commands, with Kp and Kd parameters. Epically Powerful 
implements this for the CubeMars, CyberGear, and RobStride actuators 
B) Velocity loop controls around a reference velocity setpoint. Kp and 

Ki are configurable through firmware setup. C) Position loop controls 
around a reference position setpoint. Kp and Kd are configurable 
through firmware setup. D) Current loop controls around a reference 
current setpoint. B-D are implemented in Epically Powerful for 
CubeMars only. 

FIGURE 3. The maximum operating frequencies on each computer for 
various actuator counts.  We tested up to eight actuators, with the 
minimum operating frequency of the NVIDIA Jetson Orin Nano Super 
being 470 Hz and the Raspberry Pi 3B+ being 260 Hz. 
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Notation (JSON) strings.  This allows the user to send a single 

line per loop, updating PlotJuggler with the most recent 

controller data.  Importantly, PlotJuggler can be used to view 

data on a different device (e.g. an external laptop or tablet to 

view data during experiments) than the one running an 

Epically Powerful controller, with installers available for 

Windows and Linux, and source builds for Mac OS. 

3) DATA RECORDING 

We also include a data recorder that seamlessly writes to text 

files, which are comma delimited by default (i.e. CSV files).  

The file is written to throughout recording, limiting data loss 

if errors occur during recorded trials.  By default, the data 

recording buffers 200 frames of data, dumping this data to the 

written file through a background thread once that buffer fills 

(e.g. data will be added to the written file once per second for 

a 200 Hz controller).  

V. DISCUSSION 

Epically Powerful provides a robust, modular, customizable, 

and accessible framework to build and control wearable 

robotic systems.  In recent years, advances in commercially 

available system components have caused the wearable 

robotics field to slowly and independently unify how robots 

are constructed for controls-focused research.  Despite this 

convergence towards similar hardware, the incorporation of 

subsystems and underlying software architecture are still 

largely developed in time-intensive silos.  We created 

Epically Powerful to enable the rapid development and 

deployment of the common core functions of any wearable 

robotic system that can sense, think and act in real time.  

Drawing on an inventory of the most commonly used 

components in wearable robotics systems today, we provide 

an open-source suite of recommendations for hardware 

component selection and assembly along with a modular 

software architecture that can seamlessly interact with each 

subsystem.  Thus, Epically Powerful is meant to enable 

researchers to go from scientific ideation to an operational 

robotics platform quickly, with fewer redesigns and 

debugging sessions along the way. 

In comparison to previously published open-source 

efforts, Epically Powerful employs a modular architecture 

that enhances both robustness and versatility. For example, 

Epically Powerful can function as the integration and 

software backbone for open-source hardware designs, such 

as the Michigan M-BLUE exoskeleton [18], or act as the 

foundation for user-customized physical architectures (Fig. 

5).  It is specifically designed so that users can make 

hardware innovations, rather than being fixed to a specific 

hardware setup.  Users can select from a slew of actuators, 

computers, power sources, and sensors, with all 

combinations being compatible with each other and the 

underlying software architecture.  Researchers benefit from 

this modularity by being able to leverage vetted key 

hardware and software without being locked into a broader 

physical robotic architecture.  Though this package was 

originally designed with wearable robots in mind, the 

common use of QDD actuators and single board computers 

in various areas of robotics ensures that this system can be 

broadly adopted (Fig. 5). 

In addition to the modular hardware system, Epically 

Powerful presents an accessible and adaptable software 

architecture.  The Python-based programming interface 

lowers the barrier for use while also easily integrating with 

machine learning architectures for more advanced 

applications.  Specifically, the majority of wearable robotic 

controls research focuses on developing mid- and high-level 

controllers rather than low-level controllers.  This package 

handles low-level control, which can otherwise be a 

frustrating and time-consuming aspect of system 

development, particularly for novice roboticists.  Along 

these lines, the Epically Powerful code wrapper enables 

users to interact with all components in a consistent style 

regardless of underlying differences in low-level 

communication protocols and information structures.  The 

open-source nature of the software package also gives users 

full control to alter or append to the code base for 

application-specific contexts, such as incorporating custom 

sensing peripherals.  The software architecture is 

generalizable, enabling users to easily add, swap, or update 

device components. 

The maintenance of this package is an ongoing effort that 

the EPIC and PoWeR Labs at Georgia Tech have and intend 

to continue, including addressing any system bugs, 

FIGURE 5. Epically Powerful serves as the core mechatronics infrastructure supporting a range of customizable mechanical architectures.  We have 
used Epically Powerful to develop and operate both sensor-only suits and a variety of exoskeleton devices.  The core subcomponents of the system – 

actuators, single board computers, sensors, and power sources – are standard across many areas of robotics, ensuring that Epically Powerful 
provides utility for both wearable and general robotics applications. 
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evaluating compatibility with new components, and making 

updates to accommodate recent product releases.  Our goals 

for future development of this package include integrating 

non-native driver boards, enabling the implementation of 

custom motor thermal models, and extending 

implementation to include a broader array of commonly used 

sensors.  At the time of this publication, Epically Powerful is 

the backbone of eleven different wearable robotic systems 

across four universities (Appendix A).  Our goal is that 

researchers in both wearable and broader areas of robotics 

can harness Epically Powerful to get robotic systems running 

quickly, supported by vetted hardware and armed with a 

software backbone that can be easily deployed and 

customized for domain-specification applications. 

VI. CONCLUSION 

Epically Powerful provides a modular mechatronics 

infrastructure and open-source software package to build and 

operate wearable robotic systems [19], [20].  The 

recommended mechatronics build enables users to choose 

from common and broadly utilized off-the-shelf actuators, 

single board computers, power sources, and sensors, 

allowing customization based on the application.  The 

software package easily integrates with these components 

and provides an easy-to-use Python interface for actuator 

communication, sensor data querying, data recording, 

visualization, and other necessary functionality.  Broadly, 

Epically Powerful simplifies system construction and 

baseline operation to enable efficient and robust 

development of custom wearable robotic systems and 

beyond. 

APPENDIX A 

The following table includes all devices that are running 

Epically Powerful at the time of this publication.  The 

diversity of devices highlights the flexibility and 

customizability of the hardware configuration while still 

being able to use Epically Powerful’s software architecture 

as the controls backbone.   
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Affiliation Device Computer Actuator(s) 
EP-Integrated 

Sensor(s) 
Battery 

Operating 

Frequency 

Added Sensor 

Peripherals 
Software Additions 

Georgia Tech 

EPIC/PoWeR Labs 
Hip Exo (2 DOF) [12] 

NVIDIA Jetson 

Orin Nano 
AK80-9 (4) 

MicroStrain 

IMUs (8) 
24V 2Ah drill 200 Hz 

Force sensitive 

resistors (4) 

Real-time deep learning 

models (2) 

Georgia Tech 
EPIC/PoWeR Labs 

Knee Exo 
NVIDIA Jetson 
Orin Nano 

AK10-9 V2 (2) 
MicroStrain 
IMUs (6) 

24V 4Ah drill 200 Hz 
XSENSOR Insoles 
(2) 

Real-time deep learning 
model (1) 

Georgia Tech  

EPIC Lab 
Knee Exo Raspberry Pi 4B+ 

CyberGear 

Micromotor (1) 

MicroStrain 

IMUs (2) 
20V 1.5Ah drill 200 Hz 

Force sensitive 

resistors (1) 
None 

Georgia Tech 

EPIC Lab 
Hip Exo (1 DOF) 

NVIDIA Jetson 

Orin Nano 
AK 80-9 (2) 

Microstrain 

IMUs (5) 
24V 2Ah drill 200 Hz 

XSENSOR Insoles 

(2) 

Real-time deep learning 

model (1) 

Georgia Tech 

EPIC/PoWeR Labs 
Ankle Exo 

NVIDIA Jetson 

Orin Nano 

AK80-9 (2) OR 

AK80-9 (2) + 
Micromotor (2) 

MicroStrain 

IMUs (5) 
24V 2 Ah drill  200 Hz 

XSENSOR insoles 

(2), load cells (2) 

Real-time deep learning 

models (2) 

Georgia Tech 

EPIC Lab 
Hip-Knee Exo 

NVIDIA Jetson 

Orin Nano 
AK80-9 (4) 

MicroStrain 

IMUs (5) 
20V 3Ah drill (2) 200 Hz 

XSENSOR Insoles 

(2) 

Real-time deep learning 

model (1) 

Georgia Tech 
EPIC/PoWeR Labs 

Sensor Suit [28] 
NVIDIA Jetson 
Orin Nano 

None 
MicroStrain 
IMUs (6) 

24V 2Ah drill 200 Hz 
XSENSOR Insoles 
(2) 

Real-time deep learning 
model (1) 

Georgia Tech 

EPIC Lab 
Sensor Suit Raspberry Pi 5 None 

MicroStrain 

IMUs (5) 
5V power bank 200 Hz 

XSENSOR Insoles 

(2) 
None 

Northeastern 

Shepherd Lab 
Hip Exo (1 DOF) 

NVIDIA Jetson 

Orin Nano 
AK80-9 (2) OR 

AK10-9 (2) 
None 20V 5Ah drill 200 Hz None None 

Carnegie Mellon 

MetaMobility Lab 
Hip Exo (1 DOF) 

NVIDIA Jetson 

Orin Nano 
AK80-9 (2) None 

HRB 24V 3.3 Ah 

LiPo 
200 Hz 

TDK InvenSense 

IMU 

Real-time deep learning 

model (2) 

U of Washington 

Ingraham Lab 
Hip Exo (1 DOF) Raspberry Pi 5 AK80-9 V2.0 (2) None 24V 2Ah drill  100 Hz 

Teensy + 6DOF 

IMU (2) 
None 
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