

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.Doi Number

Epically Powerful: An open-source software
and mechatronics infrastructure for wearable
robotic systems

*Jennifer K. Leestma1,2,3, *Siddharth R. Nathella1, *Christoph P. O. Nuesslein1,2, Snehil
Mathur4,5, Student Member, IEEE, Gregory S. Sawicki1,2,6, Member, IEEE, and Aaron J.
Young1,2, Senior Member, IEEE
*These authors contributed equally to this work
1George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
2Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332 USA
3School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
4School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
5School of Mechanical Engineering, Rice University, Houston, TX 77005 USA
6School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA

Corresponding author: Jennifer K. Leestma (e-mail: jleestma@seas.harvard.edu).

This work was supported in part by the National Science Foundation Research Traineeship: Accessibility, Rehabilitation, and Movement Science (NSF NRT

ARMS) Program Award 1545287, National Science Foundation Graduate Research Fellowship Program (NSF GRFP) Award 1324585, NIH Director’s New

Innovator Award DP2-HD111709, Georgia Tech Mechanical Engineering Interdisciplinary Research Fellowship, National Defense Science and Engineering

Graduate (NDSEG) Fellowship, Georgia Tech President's Undergraduate Research Award, NSF FRR grant 2233164, and NSF TIPS grant 2202862.

ABSTRACT Epically Powerful is an open-source robotics infrastructure that streamlines the underlying

framework of wearable robotic systems – managing communication protocols, clocking, actuator commands,

visualization, sensor data acquisition, data logging, and more – while also providing comprehensive guides

for hardware selection, system assembly, and controller implementation. Epically Powerful contains a code

base enabling simplified user implementation via Python that seamlessly interfaces with various commercial

state-of-the-art quasi-direct drive (QDD) actuators, single-board computers, and common sensors, provides

example controllers, and enables real-time visualization. To further support device development, the package

also includes a recommended parts list and compatibility guide and detailed documentation on hardware and

software implementation. The goal of Epically Powerful is to lower the barrier to developing and deploying

custom wearable robotic systems without a pre-specified form factor, enabling researchers to go from raw

hardware to modular, robust devices quickly and effectively. Though originally designed with wearable

robotics in mind, Epically Powerful is broadly applicable to other robotic domains that utilize QDD actuators,

single-board computers, and sensors for closed-loop control.

INDEX TERMS Actuators, Assistive Robots, Control systems, Exoskeletons, Mechatronics, Open source

software, Rapid prototyping, Robotics, System integration, Wearable robots

I. INTRODUCTION

Wearable robotic controls researchers are often faced with

a choice between buying a pre-existing off-the-shelf

robotic system or developing their own custom robotic

system from the ground up. Off-the-shelf systems have the

benefit of well-designed, robust, and ready-to-use physical

components along with documentation and technical

support [1], [2], [3], [4], [5], [6]. However, these systems

often lack customizability and may operate using guarded

or proprietary platforms that inhibit full access to mid- and

low-level control structures and parameters. On the other

hand, developing custom hardware and software enables

researchers to tailor systems to their specific application

with full access to system controls [7], [8], [9], [10], [11],

[12], [13], [14]. However, these endeavors often suffer

from time-intensive and expensive development processes

and the lack of broader community support and

collaboration throughout development and deployment.

This tug-of-war between pre-set reliability and flexibility

impedes researchers from being able to progress

fundamental controls research that is crucial to the

advancement of wearable robotic systems.

VOLUME XX, 2017 7

In recent years, the development of custom wearable

robotic systems has been propelled by advances in

commercially available sub-components. Specifically, the

popularization of quasi-direct drive (QDD) actuators has

hugely benefitted the robotics community; these new

commercially available QDD actuators are fast,

backdrivable, open loop torque controllable, and low-

profile “pancake” shaped actuators that are well suited for

exoskeletons, prostheses, quadrupeds, and related types of

robotic systems. Though these developments have sped up

the mechanical design process by enabling and enhancing

the quality of custom builds, researchers are often still

tasked with developing mechatronic architectures and

software interfaces from scratch as well as ensuring cross-

component compatibility and integration. These

development efforts are time consuming and typically lead

to non-standardized setups that contribute to existing

research silos. This inhibits groups from easily

collaborating, sharing control frameworks, comparing

controllers across hardware, or even maintaining control

system uniformity within individual lab groups. There is a

need for an open-source mechatronics and software

infrastructure that is robust, reliable, and modular to unify

the controls implementation with these commercial

actuators and broader wearable robotic systems.

Recent research efforts have highlighted open-source

hardware and software research tools as promising

approaches to reduce development time and propel

scientific progress. During the rise in popularity of

modern-day wearable robotics research, the Flexible,

Scalable Electronics Architecture (FlexSEA) offered

streamlined and efficient embedded hardware with a

software stack for core functions such as motor control and

sensor integration [15]. Though this contribution is well-

suited for wearable robotic applications, the C-based

programming presents a higher barrier-to-entry and does

not leverage recent advancements in single board

computers that could enable quicker and simpler

prototyping and implementation. With similar motivations,

the Open-Source Leg (OSL) was developed as a combined

hardware-software platform for developing lower limb

prostheses, aimed at standardizing hardware and enabling

cross-group comparisons, replication, and collaboration

[16]. However, this development is prosthesis-specific,

inhibiting use for broader and customizable robotic

systems. Similar to the OSL, the OpenExo project

streamlines the hardware and software development of

upper and lower limb exoskeletons [17]. However, the

software architecture is designed to work with specific

hardware configurations, and the Arduino-based

programming interface deters advanced and data-driven

code implementation without an additional computer.

Finally, the M-BLUE exoskeleton provides an affordable

and modular open-source hardware setup for lower limb

exoskeletons [18]. However, the mechanical-only open-

source design requires mechatronic and software

development. Together, these efforts illustrate the success

of open-source efforts lowering the barrier for robotics

research, enabling researchers to address fundamental

questions more quickly and reliably. While these open-

source efforts have advanced the field by offering

accessible and specialized solutions, they often lock

developers into pre-determined hardware setups. Our goal

is to provide an extensible, modular hardware-software

infrastructure that supports a wide range of hardware

configurations without sacrificing rigor or usability.

In this paper, we present Epically Powerful (named after

the Georgia Tech EPIC and PoWeR Labs – the two research

groups that collaborated to create the platform), an open-

source software and mechatronics infrastructure to

accelerate the development of custom wearable robotic

systems. The cornerstone of the Epically Powerful package

is the software infrastructure to communicate with

commercially available actuators via controller area

network (CAN) communication, notably CubeMars AK

Series, RobStride, and CyberGear actuators. In addition,

Epically Powerful contains software packages for analog

sensing from various commercial inertial measurement

units (IMUs), clocking, visualization, safety monitoring,

and other essential plumbing for robotic system operation.

Our system leverages single-board computing and a

Python-based interface, offering a simple and accessible

platform for hardware integration and software

development. The installation of Epically Powerful is

simple, requiring only a few lines of code to install the

package and all dependencies, set up a hotspot, and other

tasks needed for immediate operation. The software

package is accompanied by extensive documentation,

recommended parts list and compatibility guide, and

detailed instructions on both software and hardware

implementation. This package is designed to be modular

and extensible, allowing users to easily swap components,

update controllers, and add functionality without needing

to reconfigure the essential hardware and software that

enables baseline functionality. Epically Powerful enables

both novice and expert roboticists to accelerate custom

wearable robotic system development without sacrificing

rigor, efficiency, or reliability. Full documentation is

available at https://gatech-epic-power.github.io/epically-

powerful/ and code repository is available at

https://github.com/gatech-epic-power/epically-powerful.

II. CONSTRUCTING AN EPICALLY POWERFUL ROBOT

Epically Powerful is intended to serve as an adaptable

mechatronics framework and software stack that enables the

rapid development and operation of wearable robotic devices.

The hardware and software infrastructure supports modular

combination of actuators, single-board computers, sensors,

and power sources into one cohesive mechatronic system,

facilitating the realization of custom application-specific

https://gatech-epic-power.github.io/epically-powerful/
https://gatech-epic-power.github.io/epically-powerful/
https://github.com/gatech-epic-power/epically-powerful

VOLUME XX, 2017 7

devices (Fig. 1). We intentionally decouple the core

mechatronics and control functionality from domain-specific

device configurations, enabling the user to design a physical

robot that is best suited for their application. For example, if

using Epically Powerful to construct and control a hip

exoskeleton, the user can freely develop the human interfacing

components that couple the actuators to the user as well as a

backpack or other holder for the mechatronics components.

The compatibility of all included subcomponents (i.e.

actuators, computers, sensors, and power sources) ensures that

users can configure a device tailored to their application, rather

than being locked into a pre-set hardware configuration.

Epically Powerful includes extensive online documentation

and open-source code repository [19], [20]. The

documentation discusses part selection, subcomponent setup,

mechatronic assembly, actuator configuration, as well as

software deployment and testing. Users can select from a suite

of commercial quasi-direct drive (QDD) actuators, single-

board computers (Raspberry Pi and NVIDIA Jetson Orin),

sensors, and power source options. The documentation

provides further guidance on assembling power and

communication subsystems, implementing safety options,

configuring devices, and other steps needed to get a robot up

and running, supporting reproducibility and rapid

development.

The software package, available through the Python

package index (PyPI), provides robust functionality for any

combination of chosen hardware subcomponents. Crucially,

the software package abstracts low-level control operations,

enabling the user to focus on mid- and high-level controller

development using Python (Fig. 2). The included supporting

functions for real-time control operation alongside example

controllers lower the development time barrier for both novice

and experienced roboticists.

Broadly, Epically Powerful aims to provide users with

domain-specific design flexibility while accelerating

development with modular, vetted hardware and a robust and

adaptable software stack. Although originally designed by

our group for the development of wearable robots and related

devices, the common use of QDD actuators, single-board

computers, and inertial measurement unit (IMU) sensors

across many areas of robotics allows this package to be

useful to the broader robotics community.

III. HARDWARE COMPONENTS

We designed Epically Powerful’s control system to be

compatible with a suite of commercially-available, off-the-

shelf components, allowing researchers to choose the

components that are best suited for their application. We

accommodate several QDD actuators that span a large range

of torque capabilities applicable for wearable robotics, two

classes of single board computers, various IMU sensors, and

power source options (Fig. 1). All computers are compatible

with all actuators and sensors and can also be powered using

any of the included battery types, enabling users to select

components specific to their application. Our ordering guide

not only outlines these component options but also highlights

key implementation needs across these categories (e.g.

battery choices best suited to selected components, needed

connectors, etc.). Here, we discuss the hardware

components that we have ensured are compatible with

Epically Powerful software and that are discussed in our

ordering and compatibility guide (Fig. 1).

A. ACTUATORS

The supported and compatible hardware includes QDD

actuators, available through CubeMars, RobStride, and

CyberGear. At the time of this publication, the compatible

actuators provide rated torque capabilities ranging from 1.3-

40 Nm, peak torque capabilities ranging from 4.1-120 Nm,

with costs ranging from $136-$799. These compatible

actuators include all CubeMars AK Series actuators, all

RobStride Dynamics RobStride Series actuators, and the

Xiaomi CyberGear Micromotor. Because the CubeMars

AK80-64 is not a QDD actuator and the RobStride 00 does not

have a thin, pancake-like profile like the others discussed

throughout this work, they are excluded from our parts list

though they are also compatible with the Epically Powerful

system. We also intend to continually update the package

following publication to ensure compatibility with any new

state-of-the-art QDD actuator releases.

Each of these actuators contains an encoder, providing

position and velocity measurements during actuator operation.

FIGURE 1. The compatible hardware setup for Epically Powerful is meant to be modular and customizable. The three main components that users
need to select are actuators, power source(s), and a computer, with optional sensors. The system is compatible with all CubeMars AK-Series

actuators, all RobStride actuators, and the CyberGear Micromotor. A Li-Ion drill battery or LiPo battery can be used to power the actuators and
computer, with the computer being optionally and separately powered by a power bank. Users can also choose between an NVIDIA Jetson Orin Nano
or Raspberry Pi. Users can interact with common inertial measurement unit (IMU) sensors, alongside native actuator encoders. We include
recommendations and setup instructions for all parts needed to interface between the actuators, power, computer, and sensors.

VOLUME XX, 2017 7

Because this is a sensor that is natively included with

actuation, encoders are not discussed in the Sensors section of

this paper. Similarly, in the code base, encoders are referenced

through the Actuation class rather than the Sensing class.

Our documentation and ordering guide provide lists of

various components needed to ensure actuator function and

safety. Each set of actuators should be accompanied by a

CAN transceiver board that enables CAN communication

with the chosen computer. Additionally, actuators can be

powered using one of our recommended lithium polymer

(LiPo) battery or lithium ion (Li-Ion) drill battery options,

along with fuses that protect the system if current is

overdrawn. Finally, actuators should also include an

emergency stop to ensure user safety. All of these components

are included in the recommended parts list and assembly

instructions.

B. SINGLE BOARD COMPUTERS

Epically Powerful is compatible with both the NVIDIA Jetson

Orin Nano series and the Raspberry Pi series of single board

computers running a Linux-based operating system. These are

highly capable devices that have been broadly used to control

advanced wearable robotic systems [10], [12], [21], [22]. The

Jetson Orin Nano provides a higher-end option that is

particularly suited for real-time machine learning and vision

processing due to its onboard NVIDIA graphics processing

unit (GPU) with CUDA cores. The Raspberry Pi has reduced

real-time machine learning capacity but is an excellent lower-

cost, lower-power, and lower profile alternative for diverse

robotic applications. We intend to ensure Epically Powerful

compatibility with future hardware and software updates to

these single board computer lines.

In the ordering and compatibility guide, we provide various

power options for these computers. Computer power can

either be shared with actuators or be powered separately. If

power is shared, we provide a recommended buck converter

that enables the battery’s voltage to be stepped down to a level

that is appropriate for the computer along with a fuse that

protects the system from overdrawn current. If power is

separate, we provide a recommended power bank.

C. POWER SOURCES

Li-Ion drill or LiPo batteries are used to power the actuators in

the system, as well as the computer if the user chooses a shared

power source. In the ordering and compatibility guide, we

recommend suitable batteries for each of the actuators that are

compatible with Epically Powerful, including various Li-Ion

drill battery and LiPo battery options. Li-Ion drill batteries are

comparably low-maintenance, safe, easily accessible, and

durable, and thus we strongly recommend them over LiPo

alternatives, though they suffer slightly from being bulkier and

heavier than their LiPo counterparts. LiPo batteries are

comparably more power dense, allowing them to be lighter in

weight. However, LiPo batteries are also susceptible to

catching fire, so we only recommend them if the user group is

familiar with and equipped with proper LiPo charging

equipment and storage. Computers can be powered by sharing

and stepping down the actuator power or by using a separate

power bank. We recommend components for both options

and discuss setup instructions in the documentation

(https://gatech-epic-power.github.io/epically-powerful/).

D. SENSORS

To complement the on-device computation and actuation,

which includes encoder sensors, Epically Powerful currently

supports three IMU types: the MicroStrain series (HBK

MicroStrain, Williston, VT, USA), OpenIMU series

(ACEINNA, Tewksbury, MA, USA) and the MPU-9250 unit

(TDK InvenSense, San Jose, CA, USA). The MicroStrains

provide onboard functionality to filter and derive orientation

from raw sensor data, making them suitable for higher-end

sensing tasks where orientation is valued. The OpenIMUs

offer similar features including orientation algorithms that,

like the MicroStrains’, are commercially supported and easily

accessible. The MPU-9250s offer more basic functionality,

though their affordability makes them desirable for more

budget-conscious implementations. It is important to note that

all three options provide essentially the same basic

accelerometer and gyroscope readings, with little difference in

quality between sensors. As newer models in these sensor

product lines become available, we intend to integrate them,

along with additional sensor types, into Epically Powerful.

The ordering guide includes not only each sensor, but also

any needed or beneficial peripherals. The MicroStrains

communicate via universal asynchronous receiver-transmitter

(UART) cables provided with each unit, many of which can

be connected over a single USB distributor. Similarly, the

OpenIMUs, which use the CAN protocol like our actuator

options, can be connected over the same CAN bus. By

contrast, the MPU-9250 IMUs, which use the inter-integrated

circuit (I2C) protocol for communication, can be configured

with multiplexing boards to enable more than two sensors to

be connected on the same I2C bus. Notably, none of the IMU

communication methods conflict with the actuators’ CAN

communication, ensuring that all sensors are compatible with

any actuation setup. Any configuration of these sensors can

be set up together on Epically Powerful-supported computers,

making multi-sensor configurations straightforward to

implement.

IV. SOFTWARE PACKAGE

The Epically Powerful software package enables a seamless,

Python-based user application programming interface (API)

for bidirectionally communicating with actuators, querying

data from sensors, visualizing data in real-time, clocking, and

recording data (Fig. 2). Specifically, the actuation portion of

the software package abstracts away complex low-level

actuator communication handling and operation monitoring,

VOLUME XX, 2017 7

enabling researchers to focus their effort on mid- and high-

level controller development. Broadly, the package is

designed to handle the essential plumbing of a robotic control

system, while enabling users to readily interact with key

operations that may vary across use cases. It should be noted

that, if any specific application does require the alteration of

the code’s background operation, the code is fully accessible

and editable for customization.

A. ACTUATION

Epically Powerful provides a flexible and robust framework

for interfacing with a variety of actuators via CAN

communication. The main functionality is handled using

ActuatorGroup objects, which are used to initialize and

manage a set of actuators. These can include a mix of

CubeMars, RobStride, and CyberGear actuators. To initialize

an ActuatorGroup, the user constructs the object by specifying

the type of each actuator (e.g. “AK80-9”) and its

corresponding CAN ID. Actuator-specific limits (position,

velocity, torque, PID gains) are included for each compatible

actuator and are used to ensure proper communication behind

the scenes. Supporting modules add functions such as

checking connection status, automatically zeroing torque

when the system is disabled, warning the user when rated

torques are being exceeded, optionally saturating torque to

below rated limits, and more (Fig. 2).

The actuation class manages initialized actuators, verifies

connectivity, sends commands to actuators, and queries the

actuators’ current states. Actuators can be driven using

desired torque, position, or velocity, with an optional current

control function for CubeMars actuators. Actuators can also

be queried to provide torque, position, velocity, and

temperature state. We implemented safety and monitoring

functionality, such as tracking root mean squared torques

over a 20 second window with an optional to automatically

limit torque to prevent overheating of the actuators.

Supporting functions handle low-level bitwise conversion

and CAN message packing and unpacking.

The actuator control framework is implemented on top of

the python-can library, and by default is designed to use the

SocketCAN protocol of the Linux specification [23], [24].

Working directly with different CAN bus interfaces is often

cumbersome, requiring handling of low-level differences in

message formats and parsing. Epically Powerful abstracts

this process by handling lower-level interfacing with the

python-can library, enabling users to interact with systems in

a consistent way across different CAN bus interfaces. Our

approach allows users to pass arguments to the

ActuatorGroup objects, allowing the same message handling

and sending functions to be used regardless of the underlying

interface and actuator type.

Users should note that CubeMars actuators have two

operating modes, referred to as “MIT” and “Servo” mode, that

can be initialized and used via Epically Powerful (Fig. 3). Our

approach uses MIT mode by default, as that is our

recommendation for most users. MIT mode accepts any

combination of position, velocity, and/or torque commands

and attempts to drive the actuators directly without utilizing

cascaded loops (Fig. 3A). In comparison, Servo mode utilizes

separate loops for position, velocity, and current (Fig.

3B,C,D), driven by gains that can only be set via the

CubeMars R-Link software. Servo mode does, however,

allow for direct control of current, which yields slightly higher

maximum torque outputs than the MIT mode and may be

desirable for specific applications. Using direct current

control is also possible for the RobStride and CyberGear

actuators, but is not currently included in our implementation.

B. SENSING

The Epically Powerful package supports three types of IMUs.

Epically Powerful wraps around HBK MicroStrain’s MSCL

package to communicate with the MicroStrain IMUs and

directly initializes MPU-9250 and OpenIMU units [25]. Each

IMU type is managed by its own class with low-level

implementation handled in the background by Epically

Powerful, allowing users to employ consistent commands to

FIGURE 2. An overview of the Epically Powerful software architecture and functionality. Users are intended to regularly interact with frontend
functionality (white boxes), which has a consistent stylistic implementation across device types and code function. The backend functionality

(shaded boxes) provides underlying granular structure needed to support simple and robust frontend use.

VOLUME XX, 2017 7

query linear acceleration, angular velocity, magnetometer, and

temperature data from each IMU type. Additionally, users can

query the MicroStrain’s direct orientation estimates and utilize

their various forms of configurable signal filtering. Packages

and setup steps to configure the computer to interface with

these sensors are either automatically installed on package

setup or included in the Epically Powerful documentation.

C. TOOLBOX

The Epically Powerful toolbox provides various functions to

support the main actuation and sensing functionality during

real-time control. These additions include code for regulating

operating frequency, visualizing data in real time, and

recording data, alongside example scripts that show sample

implementations of various Epically Powerful functions.

1) CLOCKING

Epically Powerful includes a clocking function to ensure

fixed-rate operation of control loops. The clocking

functionality is implemented using Cython, allowing for

high precision sleeping via direct calls to C functions in the

operating system. The clocking uses a “scheduling”

approach, which cleverly lengthens and shortens each loop

so that over time the average loop time is very close to the

target loop time, achieving more consistent clocking

performance than other approaches. It should be noted that

maximum operating frequencies will be determined by the

contents of the control loop. We found that operating

frequencies are largely limited by the number of actuators

included and the chosen computer.

We performed tests to determine the maximum operating

rate based on number of actuators and computer. This is the

operating rate at which the CAN buffer can accept data,

which is separate from the execution time required for

contents in a typical control loop. The maximum operating

rate is meant to act as an upper bound, but control operation

will likely be limited by computations or other functions in

the main loop. We used both a Jetson Orin Nano and

Raspberry Pi 3B as well as various CubeMars AK Series

actuators, testing all combinations between one and eight

actuators. We initialized testing with a search space between

50 to 9000 Hz and performed binary search until the search

space resolution fell below 100 Hz. Actuators were run for

60 seconds at each frequency, with the tested frequency

being eliminated if the computer errored and failed to retain

the operating rate. The final chosen frequency was validated

for five minutes to confirm longer duration operation. Figure

4 shows the results from both computers across the various

actuator counts. If additional time-intensive operations are

added to a control loop (e.g. machine learning models), we

encourage characterizing the added operation times and

modifying these recommended values.

2) DATA VISUALIZATION

Epically Powerful is designed to be compatible with

PlotJuggler, a widely used visualization tool that is commonly

deployed alongside middleware, such as the Robot Operating

System (ROS) [26], [27]. To simplify the implementation

process, Epically Powerful provides a simplified interface for

sending data to PlotJuggler via a user datagram protocol

(UDP) socket with messages encoded as JavaScript Object

FIGURE 4. Control loops describing the four available modes. A) "MIT"
control mode allows for compound control of torque, position, and
velocity commands, with Kp and Kd parameters. Epically Powerful
implements this for the CubeMars, CyberGear, and RobStride actuators
B) Velocity loop controls around a reference velocity setpoint. Kp and

Ki are configurable through firmware setup. C) Position loop controls
around a reference position setpoint. Kp and Kd are configurable
through firmware setup. D) Current loop controls around a reference
current setpoint. B-D are implemented in Epically Powerful for
CubeMars only.

FIGURE 3. The maximum operating frequencies on each computer for
various actuator counts. We tested up to eight actuators, with the
minimum operating frequency of the NVIDIA Jetson Orin Nano Super
being 470 Hz and the Raspberry Pi 3B+ being 260 Hz.

VOLUME XX, 2017 7

Notation (JSON) strings. This allows the user to send a single

line per loop, updating PlotJuggler with the most recent

controller data. Importantly, PlotJuggler can be used to view

data on a different device (e.g. an external laptop or tablet to

view data during experiments) than the one running an

Epically Powerful controller, with installers available for

Windows and Linux, and source builds for Mac OS.

3) DATA RECORDING

We also include a data recorder that seamlessly writes to text

files, which are comma delimited by default (i.e. CSV files).

The file is written to throughout recording, limiting data loss

if errors occur during recorded trials. By default, the data

recording buffers 200 frames of data, dumping this data to the

written file through a background thread once that buffer fills

(e.g. data will be added to the written file once per second for

a 200 Hz controller).

V. DISCUSSION

Epically Powerful provides a robust, modular, customizable,

and accessible framework to build and control wearable

robotic systems. In recent years, advances in commercially

available system components have caused the wearable

robotics field to slowly and independently unify how robots

are constructed for controls-focused research. Despite this

convergence towards similar hardware, the incorporation of

subsystems and underlying software architecture are still

largely developed in time-intensive silos. We created

Epically Powerful to enable the rapid development and

deployment of the common core functions of any wearable

robotic system that can sense, think and act in real time.

Drawing on an inventory of the most commonly used

components in wearable robotics systems today, we provide

an open-source suite of recommendations for hardware

component selection and assembly along with a modular

software architecture that can seamlessly interact with each

subsystem. Thus, Epically Powerful is meant to enable

researchers to go from scientific ideation to an operational

robotics platform quickly, with fewer redesigns and

debugging sessions along the way.

In comparison to previously published open-source

efforts, Epically Powerful employs a modular architecture

that enhances both robustness and versatility. For example,

Epically Powerful can function as the integration and

software backbone for open-source hardware designs, such

as the Michigan M-BLUE exoskeleton [18], or act as the

foundation for user-customized physical architectures (Fig.

5). It is specifically designed so that users can make

hardware innovations, rather than being fixed to a specific

hardware setup. Users can select from a slew of actuators,

computers, power sources, and sensors, with all

combinations being compatible with each other and the

underlying software architecture. Researchers benefit from

this modularity by being able to leverage vetted key

hardware and software without being locked into a broader

physical robotic architecture. Though this package was

originally designed with wearable robots in mind, the

common use of QDD actuators and single board computers

in various areas of robotics ensures that this system can be

broadly adopted (Fig. 5).

In addition to the modular hardware system, Epically

Powerful presents an accessible and adaptable software

architecture. The Python-based programming interface

lowers the barrier for use while also easily integrating with

machine learning architectures for more advanced

applications. Specifically, the majority of wearable robotic

controls research focuses on developing mid- and high-level

controllers rather than low-level controllers. This package

handles low-level control, which can otherwise be a

frustrating and time-consuming aspect of system

development, particularly for novice roboticists. Along

these lines, the Epically Powerful code wrapper enables

users to interact with all components in a consistent style

regardless of underlying differences in low-level

communication protocols and information structures. The

open-source nature of the software package also gives users

full control to alter or append to the code base for

application-specific contexts, such as incorporating custom

sensing peripherals. The software architecture is

generalizable, enabling users to easily add, swap, or update

device components.

The maintenance of this package is an ongoing effort that

the EPIC and PoWeR Labs at Georgia Tech have and intend

to continue, including addressing any system bugs,

FIGURE 5. Epically Powerful serves as the core mechatronics infrastructure supporting a range of customizable mechanical architectures. We have
used Epically Powerful to develop and operate both sensor-only suits and a variety of exoskeleton devices. The core subcomponents of the system –

actuators, single board computers, sensors, and power sources – are standard across many areas of robotics, ensuring that Epically Powerful
provides utility for both wearable and general robotics applications.

VOLUME XX, 2017 7

evaluating compatibility with new components, and making

updates to accommodate recent product releases. Our goals

for future development of this package include integrating

non-native driver boards, enabling the implementation of

custom motor thermal models, and extending

implementation to include a broader array of commonly used

sensors. At the time of this publication, Epically Powerful is

the backbone of eleven different wearable robotic systems

across four universities (Appendix A). Our goal is that

researchers in both wearable and broader areas of robotics

can harness Epically Powerful to get robotic systems running

quickly, supported by vetted hardware and armed with a

software backbone that can be easily deployed and

customized for domain-specification applications.

VI. CONCLUSION

Epically Powerful provides a modular mechatronics

infrastructure and open-source software package to build and

operate wearable robotic systems [19], [20]. The

recommended mechatronics build enables users to choose

from common and broadly utilized off-the-shelf actuators,

single board computers, power sources, and sensors,

allowing customization based on the application. The

software package easily integrates with these components

and provides an easy-to-use Python interface for actuator

communication, sensor data querying, data recording,

visualization, and other necessary functionality. Broadly,

Epically Powerful simplifies system construction and

baseline operation to enable efficient and robust

development of custom wearable robotic systems and

beyond.

APPENDIX A

The following table includes all devices that are running

Epically Powerful at the time of this publication. The

diversity of devices highlights the flexibility and

customizability of the hardware configuration while still

being able to use Epically Powerful’s software architecture

as the controls backbone.

VOLUME XX, 2017 7

Affiliation Device Computer Actuator(s)
EP-Integrated

Sensor(s)
Battery

Operating

Frequency

Added Sensor

Peripherals
Software Additions

Georgia Tech

EPIC/PoWeR Labs
Hip Exo (2 DOF) [12]

NVIDIA Jetson

Orin Nano
AK80-9 (4)

MicroStrain

IMUs (8)
24V 2Ah drill 200 Hz

Force sensitive

resistors (4)

Real-time deep learning

models (2)

Georgia Tech
EPIC/PoWeR Labs

Knee Exo
NVIDIA Jetson
Orin Nano

AK10-9 V2 (2)
MicroStrain
IMUs (6)

24V 4Ah drill 200 Hz
XSENSOR Insoles
(2)

Real-time deep learning
model (1)

Georgia Tech

EPIC Lab
Knee Exo Raspberry Pi 4B+

CyberGear

Micromotor (1)

MicroStrain

IMUs (2)
20V 1.5Ah drill 200 Hz

Force sensitive

resistors (1)
None

Georgia Tech

EPIC Lab
Hip Exo (1 DOF)

NVIDIA Jetson

Orin Nano
AK 80-9 (2)

Microstrain

IMUs (5)
24V 2Ah drill 200 Hz

XSENSOR Insoles

(2)

Real-time deep learning

model (1)

Georgia Tech

EPIC/PoWeR Labs
Ankle Exo

NVIDIA Jetson

Orin Nano

AK80-9 (2) OR

AK80-9 (2) +
Micromotor (2)

MicroStrain

IMUs (5)
24V 2 Ah drill 200 Hz

XSENSOR insoles

(2), load cells (2)

Real-time deep learning

models (2)

Georgia Tech

EPIC Lab
Hip-Knee Exo

NVIDIA Jetson

Orin Nano
AK80-9 (4)

MicroStrain

IMUs (5)
20V 3Ah drill (2) 200 Hz

XSENSOR Insoles

(2)

Real-time deep learning

model (1)

Georgia Tech
EPIC/PoWeR Labs

Sensor Suit [28]
NVIDIA Jetson
Orin Nano

None
MicroStrain
IMUs (6)

24V 2Ah drill 200 Hz
XSENSOR Insoles
(2)

Real-time deep learning
model (1)

Georgia Tech

EPIC Lab
Sensor Suit Raspberry Pi 5 None

MicroStrain

IMUs (5)
5V power bank 200 Hz

XSENSOR Insoles

(2)
None

Northeastern

Shepherd Lab
Hip Exo (1 DOF)

NVIDIA Jetson

Orin Nano
AK80-9 (2) OR

AK10-9 (2)
None 20V 5Ah drill 200 Hz None None

Carnegie Mellon

MetaMobility Lab
Hip Exo (1 DOF)

NVIDIA Jetson

Orin Nano
AK80-9 (2) None

HRB 24V 3.3 Ah

LiPo
200 Hz

TDK InvenSense

IMU

Real-time deep learning

model (2)

U of Washington

Ingraham Lab
Hip Exo (1 DOF) Raspberry Pi 5 AK80-9 V2.0 (2) None 24V 2Ah drill 100 Hz

Teensy + 6DOF

IMU (2)
None

VOLUME XX, 2017 7

ACKNOWLEDGMENT

The authors would like to thank Dr. Max Shepherd, Fatima

Tourk, and other members of the Northeastern Shepherd

Lab, Dr. Inseung Kang, Nate Shoemaker-Trejo, Rajiv Joshi,

and other members of the Carnegie Mellon MetaMobility

Lab, and Dr. Kim Ingraham, Zijie Jin, and other members of

the Ingraham Lab, as well as the members of the Georgia

Tech EPIC and PoWeR Labs for their feedback and alpha

stage testing of Epically Powerful hardware and software.

REFERENCES
[1] Dephy, Inc., “Dephy ExoBoot.” Accessed: Sept. 16, 2025.

[Online]. Available: https://www.dephy.com/

[2] Biomotum Inc., “Biomotum SPARK.” Accessed: Sept. 16, 2025.

[Online]. Available: https://www.biomotum.com/

[3] Verve, Inc., “Verve Motion SafeLift.” Accessed: Sept. 16, 2025.

[Online]. Available: https://vervemotion.com/
[4] Skip, “Skip MO/GO.” Accessed: Sept. 16, 2025. [Online].

Available: https://www.skipwithjoy.com/

[5] Roam Robotics, “Roam Robotic Knee Brace.” Accessed: Sept. 16,

2025. [Online]. Available: https://www.roamrobotics.com/

[6] Hypershell, “Hypershell X Series.” Accessed: Oct. 03, 2025.
[Online]. Available: https://hypershell.tech/

[7] T. Zhang, M. Tran, and H. Huang, “Design and Experimental

Verification of Hip Exoskeleton With Balance Capacities for

Walking Assistance,” IEEEASME Trans. Mechatron., vol. 23, no.

1, pp. 274–285, Feb. 2018, doi: 10.1109/TMECH.2018.2790358.
[8] C. Nesler, G. Thomas, N. Divekar, E. J. Rouse, and R. D. Gregg,

“Enhancing Voluntary Motion With Modular, Backdrivable,

Powered Hip and Knee Orthoses,” IEEE Robot. Autom. Lett., vol.

7, no. 3, pp. 6155–6162, July 2022, doi:
10.1109/LRA.2022.3145580.

[9] M. K. Ishmael, D. Archangeli, and T. Lenzi, “A Powered Hip

Exoskeleton With High Torque Density for Walking, Running, and

Stair Ascent,” IEEEASME Trans. Mechatron., vol. 27, no. 6, pp.

4561–4572, Dec. 2022, doi: 10.1109/TMECH.2022.3159506.
[10] P. Slade, M. J. Kochenderfer, S. L. Delp, and S. H. Collins,

“Personalizing exoskeleton assistance while walking in the real

world,” Nature, vol. 610, no. 7931, Art. no. 7931, Oct. 2022, doi:

10.1038/s41586-022-05191-1.

[11] F. Sup, A. Bohara, and M. Goldfarb, “Design and Control of a
Powered Transfemoral Prosthesis,” Int. J. Robot. Res., vol. 27, no.

2, pp. 263–273, Feb. 2008, doi: 10.1177/0278364907084588.

[12] J. K. Leestma, S. Mathur, M. D. Anderton, G. S. Sawicki, and A. J.

Young, “Dynamic Duo: Design and Validation of an Autonomous

Frontal and Sagittal Actuating Hip Exoskeleton for Balance
Modulation During Perturbed Locomotion,” IEEE Robot. Autom.

Lett., vol. 9, no. 5, pp. 3995–4002, May 2024, doi:

10.1109/LRA.2024.3371290.

[13] Z. F. Lerner et al., “An Untethered Ankle Exoskeleton Improves

Walking Economy in a Pilot Study of Individuals With Cerebral
Palsy,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 10,

pp. 1985–1993, Oct. 2018, doi: 10.1109/TNSRE.2018.2870756.

[14] A. T. Asbeck, S. M. M. De Rossi, K. G. Holt, and C. J. Walsh, “A

biologically inspired soft exosuit for walking assistance,” Int. J.
Robot. Res., vol. 34, no. 6, pp. 744–762, May 2015, doi:

10.1177/0278364914562476.

[15] J.-F. Duval and H. M. Herr, “FlexSEA: Flexible, Scalable

Electronics Architecture for wearable robotic applications,” in

2016 6th IEEE International Conference on Biomedical Robotics
and Biomechatronics (BioRob), June 2016, pp. 1236–1241. doi:

10.1109/BIOROB.2016.7523800.

[16] A. F. Azocar, L. M. Mooney, J.-F. Duval, A. M. Simon, L. J.

Hargrove, and E. J. Rouse, “Design and clinical implementation of

an open-source bionic leg,” Nat. Biomed. Eng., vol. 4, no. 10, pp.
941–953, Oct. 2020, doi: 10.1038/s41551-020-00619-3.

[17] J. R. Williams et al., “OpenExo: An open-source modular

exoskeleton to augment human function,” Sci. Robot., vol. 10, no.

103, p. eadt1591, June 2025, doi: 10.1126/scirobotics.adt1591.

[18] C. Nesler, G. Thomas, N. Divekar, E. J. Rouse, and R. D. Gregg,
“Enhancing Voluntary Motion With Modular, Backdrivable,

Powered Hip and Knee Orthoses,” IEEE Robot. Autom. Lett., vol.

7, no. 3, pp. 6155–6162, July 2022, doi:

10.1109/LRA.2022.3145580.

[19] “gatech-epic-power/epically-powerful: A python toolbox for
controlling and handling actuators and IMUs, commonly used in

robotics.” Accessed: Nov. 07, 2025. [Online]. Available:

https://github.com/gatech-epic-power/epically-powerful

[20] “Epically Powerful Documentation.” Accessed: Nov. 07, 2025.

[Online]. Available: https://gatech-epic-power.github.io/epically-
powerful/

[21] F. M. Tourk, B. Galoaa, S. Shajan, A. J. Young, M. Everett, and

M. K. Shepherd, “Uncertainty-Aware Ankle Exoskeleton Control,”

Aug. 28, 2025, arXiv: arXiv:2508.21221. doi:

10.48550/arXiv.2508.21221.
[22] D. D. Molinaro, K. L. Scherpereel, E. B. Schonhaut, G.

Evangelopoulos, M. K. Shepherd, and A. J. Young, “Task-agnostic

exoskeleton control via biological joint moment estimation,”

Nature, vol. 635, no. 8038, pp. 337–344, Nov. 2024, doi:
10.1038/s41586-024-08157-7.

[23] “SocketCAN - Controller Area Network — The Linux Kernel

documentation.” Accessed: Oct. 03, 2025. [Online]. Available:

https://docs.kernel.org/networking/can.html

[24] “python-can 4.6.1 documentation.” Accessed: Nov. 07, 2025.
[Online]. Available: https://python-

can.readthedocs.io/en/stable/index.html

[25] LORD-MicroStrain/MSCL. (Nov. 03, 2025). C++. MicroStrain by

HBK. Accessed: Nov. 07, 2025. [Online]. Available:

https://github.com/LORD-MicroStrain/MSCL
[26] M. Quigley et al., “ROS: an open-source Robot Operating

System,” ICRA Workshop Open Source Softw., 2009.

[27] “PlotJuggler,” PlotJuggler. Accessed: Nov. 07, 2025. [Online].

Available: https://plotjuggler.io

[28] R. T. F. Casey et al., “The Second Skin: A Wearable Sensor Suite
that Enables Real-Time Human Biomechanics Tracking Through

Deep Learning,” IEEE Trans. Biomed. Eng., pp. 1–10, 2025, doi:

10.1109/TBME.2025.3589996.

8 VOLUME XX, 2017

JENNIFER K. LEESTMA received the B.S.

degree in biomedical engineering from the

University of Wisconsin-Madison, Madison, WI,
USA in 2018, the M.S. degree in mechanical

engineering from the Georgia Institute of

Technology, Atlanta, GA, USA in 2022, and the

Ph.D. degree in robotics from the Georgia Institute

of Technology, Atlanta, GA, USA in 2024. Since
2024, she has been a postdoctoral fellow in

bioengineering in the School of Engineering and

Applied Sciences at Harvard University,

Cambridge, MA, USA. Her research interests include restoring and

augmenting sensory and motor function using neurally-integrated robotic
systems.

SIDDHARTH R. NATHELLA received the B.S.

degree in mechanical engineering from Purdue

University, West Lafeyette, IN, USA, in 2022. He
is currently pursuing the Ph.D. degree in

mechanical engineering at the Georgia Institute of

Technology, Atlanta, GA, USA. His research

interests include gait training and rehabilitation

using biofeedback and wearable robotics.

CHRISTOPH P. O. NUESSLEIN received the

B.S. degree in mechanical engineering from the

University of Massachusetts-Amherst, Amherst,
MA, USA, in 2021. He is currently pursuing the

Ph.D. degree in robotics at the Georgia Institute of

Technology, Atlanta, GA, USA. His research

interests include reducing joint injury prevalence

through exoskeleton assistance in manual labor
environments.

SNEHIL MATHUR (S’24) received the B.S.

degree in electrical engineering from the Georgia
Institute of Technology, Atlanta, GA, USA in

2024. He is currently pursuing the Ph.D. degree in

mechanical engineering from Rice University,

Houston, TX, USA. His research interests include

functional and teleoperated upper-limb
rehabilitation through wearable robots and

multimodal sensing.

GREGORY S. SAWICKI (M’21) received the
B.S. degree in mechanical engineering from

Cornell University, Ithaca, NY, USA in 1999, the

M.S. degree in mechanical engineering from

University of California-Davis, Davis, CA, USA

in 2001, and the Ph.D. degree in human
neuromechanics from the University of Michigan,

Ann Arbor, MI, USA in 2007. He did his

postdoctoral fellowship in integrative biology at

Brown University, Providence, RI, USA. From

2009 to 2017, he was an Associate Professor in the
Joint Department of Biomedical Engineering at the University of North

Carolina at Chapel Hill, Chapel Hill, NC, USA, and North Carolina State

University, Raleigh, NC, USA. He is currently a Professor in the George

W. Woodruff School of Mechanical Engineering and the School of

Biological Sciences at the Georgia Institute of Technology, Atlanta, GA,
USA. His research focuses on discovering physiological principles

underpinning locomotion performance and applying them to develop lower-

limb robotic devices capable of improving both healthy and impaired human

locomotion.

AARON J. YOUNG (S’12–M’16–SM’23)

received the B.S. degree in biomedical

engineering from Purdue University, West
Lafeyette, IN, USA in 2009, the M.S. degree in

biomedical engineering from Northwestern

University, Evanston, IL, USA in 2011, and the

Ph.D. degree in biomedical engineering from

Northwestern University, Evanston, IL, USA in
2014. He did his postdoctoral fellowship in

mechanical engineering at the University of

Michigan, Ann Arbor, MI, USA. He is currently

an Associate Professor with the George W. Woodruff School of Mechanical

Engineering at the Georgia Institute of Technology, Atlanta, GA, USA. His
research focuses on developing and deploying machine learning-driven

control approaches for wearable robotic systems, aimed at improving and

enhancing human mobility.

